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Abstract

In cells, the bistable kinetics of gene expression can be observed on the level
of (i) one gene with positive feedback between protein and mRNA production,
(ii) two genes with negative mutual feedback between protein and mRNA
production, or (iii) in more complex cases. We analyse the interplay of two
genes of type (ii) governed by a gene of type (i) during cellular growth. In
particular, using kinetic Monte Carlo simulations, we show that in the case
where gene 1, operating in the bistable regime, regulates mutually inhibiting
genes 2 and 3, also operating in the bistable regime, the latter genes may
eventually be trapped either to the state with high transcriptional activity of
gene 2 and low activity of gene 3 or to the state with high transcriptional
activity of gene 3 and low activity of gene 2. The probability to get to one
of these states depends on the values of the model parameters. If genes 2
and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our
model illustrates how different intracellular states can be chosen at random
with predetermined probabilities. This type of kinetics of gene expression may
be behind complex processes occurring in cells, e.g., behind the choice of the
fate by stem cells.

PACS numbers: 87.16.−b, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The expression of the information encoded in genes is known to occur via a templated
polymerization called transcription, in which the genes are used as templates to guide the
synthesis of shorter molecules of RNA [1]. Later on, many RNAs, or, more specifically,
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messenger RNAs (mRNA) serve to direct the synthesis of proteins by ribosomes. Another large
class of RNA includes non-coding RNAs (ncRNA) [2, 3]. The functions of the latter RNAs
are based on their abilities to bind to and modulate the activity of mRNAs and/or proteins
[3]. The whole process of gene expression can be regulated at all the steps. Specifically,
the gene transcription, performed by RNA polymerase during its association with DNA, is
often controlled by master regulatory proteins. Such proteins associate with DNA and either
facilitate or suppress the RNA synthesis.

The positive and negative feedbacks between RNA and protein formation may result in
complex kinetic features. In particular, the gene-expression kinetics may exhibit bistability
in a certain range of governing parameters [4–7]. Practically, this means that by changing a
governing parameter, e.g., signal amplitude, one can observe a stepwise transition or, in other
words, switch from one regime of gene expression to another regime. Such switches often
play a key role in regulation of cellular processes. For this reason, the bistable kinetics of
gene expression have long attracted attention, and now the understanding of general factors
which may result in bistability is relatively complete. The numerous models available in this
field are focused on the expression of one or two genes or more complex genetic networks
including mRNAs and proteins and exhibiting bistability under steady-state conditions [4–7].
The first bistable models including ncRNAs were recently proposed in [8, 9]. There are also
models describing ensembles of bistable cells under steady-state conditions [10]. The effect
of cellular growth on the simplest bistable kinetics of gene expression, including a gene with
positive feedback between the protein and mRNA production, was simulated in [11, 12]. The
interplay of bistable kinetics of gene expression during cellular growth has not been analysed
so far. In this work, we show what may happen in this case.

To motivate our work in more detail, we may refer to stem cells (for some other real
examples, see review [13]). Such cells are remarkable due to their ability for self-renewal
as well as generation of more specialized cells via symmetric and asymmetric divisions,
S → 2S and S → S + D, respectively (D is a differentiated cell) [14]. With this potential,
stem cells play a key role during the first steps of the development of biological species. By
adulthood, the relative number of stem cells becomes low and their presence is nearly invisible.
Nevertheless, they remain crucial for reproduction of species and also for maintenance and
repair of various tissues. For these reasons and also due to potential applications in medicine,
the stem-cell research is of high current interest (for the introduction into the state of the art in
this interdisciplinary field, see a few reviews in Nature Insight [15]). Despite the wide front
of activity in this area, the understanding of the mechanisms of functions of stem cells is still
far from complete.

Conceptually, the ability of stem cells to divide symmetrically and asymmetrically is often
believed to be related to the bistability in gene expression (for a review, see [16, 17]). In the
corresponding models, the states of a cell are identified with the steady states (or attractors) of
bistable or multistable genetic networks (see, e.g., [7, 18–23]). The models of this type make
it easily possible to describe deterministic choice of the cell fate or, more specifically, to fix
one of the states under the influence of cell–cell communication or external signals (e.g., in
stem-cell niches [24, 25]).

In some cases, stem cells choose however one or another pathway stochastically without
apparent regard to the environment. Since the seminal studies by Till et al [26], the
corresponding kinetics are often phenomenologically described by introducing the division rate
constants and probabilities corresponding to different pathways (see, e.g., recent simulations of
proliferation and differentiation of cells in a stem-cell niche [27]). The mechanism determining
these probabilities is now uncertain. The corresponding experimental data indicate that the
differentiation of stem cells is accompanied by the changes of the transcriptional activity
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of a multitude of genes [28, 29]. For this reason, the identification of the key steps is
still a challenge. Physically or mathematically, the probabilistic choice between the division
channels is expected to be somehow related either to chaotic kinetics, predicted by deterministic
equations, or to stochastic kinetics arising due to a small number of reactants participating
in some of the steps. Following the latter line, we have recently suggested [17] that the
stochastic behaviour of a single stem cell can be explained by (i) the existence of a short stage
of decision whether it will divide symmetrically or asymmetrically and (ii) control of this
stage by stochastic bistability in gene expression. However, a full model of this scheme has
not been constructed. In this work, we propose such a model. In particular, we show that
assumptions (i) and (ii) can be realized via the interplay of bistable kinetics of gene expression
during cellular growth.

2. Model

The available models of bistable gene-expression kinetics include (i) a gene with positive
feedback between protein and mRNA production, (ii) two genes with negative mutual feedback
between protein and mRNA production or (iii) more complex networks. Here, we treat the
situation when the protein produced via the activity of gene 1 of category (i) controls the
activities of genes 2 and 3 of category (ii). The activity of genes 2 and 3 is first low. During
cellular growth, the state of gene 1 changes and it results in the transition of one of the other
genes (2 or 3) to a highly active state. The high activity of gene 2 or 3 is identified with
cell differentiation. Thus, in our model, the differentiation is related to cellular growth. This
scenario of cell differentiation is novel.

The simplest generic bistable kinetic gene-transcription model belonging to category
(i) implies that the rate of the synthesis of mRNA (R1) is high provided that n regulatory sites
are occupied by protein (P1) produced via R1 translation and that the P1 association with and
dissociation from the gene are rapid so that these steps are at equilibrium. In this case, the
probability that a regulatory site is occupied by P1 is kacP1/(kd + kacP1), where ka and kd are
the association and dissociation rate constants, and cP1 is the P1 concentration. Taking into
account that the P1 concentration is related to the number of P1 copies and cell volume as
cP1 = NP1/v, the probability that a regulatory site is occupied by P1 can be represented as
NP1/(K1v(t)/v0 + NP1), where v0 is the volume corresponding to the beginning of the cell
cycle, and K1 = kdv0/ka is the constant characterizing the P1-gene association–dissociation
equilibrium.

With the specification above and n = 4, the mean-field kinetic equations for the numbers
of R1 and P1 copies in a cell during its growth are as follows [11]:

dNR1

dt
= kb + kr1

(
NP1

K1v(t)/v0 + NP1

)4

− kR1NR1 , (1)

dNP1

dt
= ks1NR1 − kP1NP , (2)

where kb and kr (kb � kr) are the rate constants of the basal and P1-regulated gene
transcription, [NP1/(K1v(t)/v0+NP )]4 is the probability that four regulatory sites are occupied
by P1, v(t) = v0 exp(kgt) is the cellular volume (kg ≡ (ln 2)/tc is the growth rate constant
and tc is the cell-cycle duration), ks1 is the P1-synthesis rate constant, and kR1 and kP1 are the
degradation rate constants.

Using equations (1) and (2), we assume that all the rate constants are independent of
cellular growth. Depending on the details, this approximation may or may not be valid (see
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the discussion in [11]). For example, the protein synthesis is performed by ribosomes, and
ks1 is independent of time provided that the number of ribosomes linearly increases with the
cellular volume. In reality, the deviations from the linear growth cannot be excluded. This
effect is however not expected to be crucial.

In our model, gene 1 is described by equations (1) and (2). As time progresses and the
cell grows, the concentration of proteins becomes more dilute. This causes fewer proteins to
bind to the DNA and the gene becomes less active. As a result, with increasing time, these
equations predict (provided that the parameters are suitable) a sharp transition from the state
with high R1 and P1 populations to the state with low R1 and P1 populations. In our scheme,
this transition or, more specifically, the drop in the P1 population is associated with a short
stage determining the fate of the evolution of two other genes. In this relation, it is appropriate
to note that equations (1) and (2) do not take duplication of genes into account. In our model,
the duplication is considered to occur after the decision stage and accordingly we do not need
to explicitly incorporate it into the analysis.

The P1-regulated kinetics of the transcription of genes 2 and 3 are described as

dNR2

dt
= kr2

(
K2

K2 + NP1v0/v(t)

)2 (
K2

K2 + NP3v0/v(t)

)2

− kR2NR2 , (3)

dNP2

dt
= ks2NR2 − kP2NP , (4)

dNR3

dt
= kr3

(
K3

K3 + NP1v0/v(t)

)2 (
K3

K3 + NP2v0/v(t)

)2

− kR3NR3 , (5)

dNP3

dt
= ks3NR3 − kP3NP , (6)

where NR2 , NP2 , NR3 and NP3 are the numbers of R2, P2, R3 and P3 copies, κr2, κr3, ks2

and ks3 are the synthesis rate constants, and kR2 , kP2 , kR3 and kP3 are the degradation rate
constants. Equation (3) implies that the R2 synthesis is suppressed by P1 and P3. In
particular, the synthesis is considered to occur provided that two regulatory sites are free
of P1 and other two regulatory sites are free of P3 (K2 and K2 are the constants characterizing
protein–gene association–dissociation equilibrium). In turn, equation (5) implies that the R3

synthesis is suppressed by P1 and P2 (K3 and K3 are the corresponding association–dissociation
constants).

In the absence of suppression of the R2 and R3 synthesis by P1 (at NP1 → 0),
equations (3)–(6) predict bistability in the expression of genes 2 and 3 provided that the
rate constants of the R2, P2, R3 and P3 synthesis are sufficiently high. During one of the
stable steady states, the R2 and P2 populations are high and the R3 and P3 populations are low.
During another steady state, the situation is opposite. The probability of trapping into one of
these states depends on the initial conditions in the beginning of the cell cycle. In reality, the
initial conditions in the beginning of the cell cycle are however poorly defined. In addition,
there are experimental indications that the decision stage of differentiation is inside the cell
cycle, not in the beginning (for example, the differentiation of mammalian cells seems to be
controlled by regulating the progression through the G1 phase and entry into the S phase [30]).
For these reasons, genes 2 and 3 alone are not sufficient in order to describe spontaneous
differentiation. In our model, the decision stage is replaced inside the cell cycle due to the
regulation of the performance of genes 2 and 3 by gene 1. Below, we illustrate this scenario
in detail.
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Figure 1. ((a) and (b)) Numbers of mRNA and protein copies as a function of time during two
Monte Carlo runs with kr2 = kr3 = 100 min−1 and tc = 2000 (for the other parameters, see the
text).

3. Results of calculations

To illustrate the kinetics predicted by equations (1)–(6), we use typical biologically reasonable
parameters (see, e.g., review [4]). In particular, the parameters for gene 1 are as follows: kb =
1 min−1, kr1 = 100 min−1,KP1 = 50, kR1 = 0.7 min−1, ks1 = 5 min−1 and kP1 = 1 min−1.
In this case, the maximum numbers of R1 and P1 copies are NR1 � kr1/kR1 = 140 and
NP1 � ks1kr1/(kP1kR1) = 700.

Genes 2 and 3 are first considered to be kinetically equivalent. Specifically, we employ
kr2 = kr3 = 100 min−1,K2 = K3 = 50,K2 = K3 = 100, ks2 = ks3 = 50 min−1 and
kR2 = kR3 = kP2 = kP3 = 1 min−1. With these parameters, the maximum numbers of R2 and
P2 (or R3 and P3) copies are NR2 � kr2/kR2 = 100 and NP2 � ks2kr2/(kP2kR2) = 5000.

The duration of the cell cycle is assumed to be tc = 2000 or 4000 min.
To include fluctuations into the kinetics under consideration, we have performed the

corresponding kinetic Monte Carlo simulations by using the standard Gillespie algorithm
[31] (for the model-specific details, see [11]). Typical stochastic kinetics calculated with the
parameters above are shown in figure 1.

With increasing time, as already noted in the previous section, the model predicts that
gene 1 exhibits a sharp transition from the state with high R1 and P1 populations to the state
with low R1 and P1 populations. During the first stage, the high P1 population suppresses
the rate of R2 and R3 synthesis, and the R2, R3, P2 and P3 populations are low. After the
transition to the second stage, the low P1 population does not suppress the rate of R2 and R3

synthesis, and the R2, R3, P2 and P3 populations begin to grow rapidly. With increasing P2

and P3 populations, these species start to suppress the R3 and R2 synthesis, respectively.
For this reason, the R2, R3, P2 and P3 populations cannot become high simultaneously.
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Figure 2. Probability that the cell reaches the state with high R2 and P2 populations as a function
of kr2 for kr3 = 100 min−1 and tc = 2000 min (filled circles) and 4000 min (open circles). Each
data point was calculated by using 100 Monte Carlo runs.

Due to fluctuations, one of the genes (2 or 3) eventually dominates and the cell is trapped
either to the state with low R2 and P2 populations and high R3 and P3 populations (figure 1(a))
or to the state with high R2 and P2 populations and low R3 and P3 populations (figure 1(b)).
In this example, genes 2 and 3 are kinetically equivalent. For this reason, the probability to
get to one of these states should be 0.5. The Monte Carlo simulations confirm that this is the
case.

If genes 2 and 3 are not kinetically equivalent, then the probability to be trapped into
one state described above is usually lower than 0.5, and the probability to be trapped into the
other state is higher than 0.5. Our experience indicates that the variation of the parameters
can easily result in appreciable preference of one of the states. This effect is illustrated in
figure 2 showing the dependence of the probability to be trapped into the state with high R2

and P2 populations and low R3 and P3 populations on kr2 for tc = 2000 and 4000 min (all the
other parameters are fixed as described above). As one could expect, this probability is lower
than 0.5 at kr2 < kr3 and higher than 0.5 at kr2 > kr3.

In general, the bistable kinetics are well known to be sensitive to kinetic parameters. For
the models under consideration, this is also the case as shown in figure 2 by varying kr2. On the
other hand, the kinetics presented are insensitive to the growth rate. In particular, the results
obtained for tc = 2000 min are nearly the same as those for 4000 min (figure 2), because the
cellular growth is slow and during the growth the gene expression is close to that predicted by
using the steady-state approximation (with respect to the change of the cellular volume).

4. Conclusion

In summary, we have analysed the interplay of bistable kinetics of gene expression during
cellular growth. In particular, we have shown that in the case where gene 1, operating in the
bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable
regime, the latter genes may eventually be trapped either to the state with high transcriptional
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activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity
of gene 3 and low activity of gene 2. The probability to get to one of these states depends on
the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability
is equal to 0.5. Thus, basically, the model shows how the genes can play dice during cellular
growth. Specifically, the model illustrates how different intracellular states can be chosen at
random with predetermined probabilities. This type of kinetics of gene expression may be
behind complex processes in cells, e.g., behind the choice of the fate by stem cells.

Concerning cell differentiation, one might argue that gene 1 in our model could be
replaced by time dependence introduced into the rate constants related to genes 2 and 3. Such
perturbations of gene 2 or 3 typically switch these genes away from the bistable regime and
usually are not efficient if the goal is to describe spontaneous differentiation occurring with
certain probabilities. Nevertheless, this strategy may work if one focuses on the perturbation
of the rate of the formation of mRNA 2 and 3 (as has been done in our treatment above), use
appreciable amplitude of this perturbation, and extend the length of its period. In this case,
in analogy with our simulations, the results will depend on the ratio of the rate constants of
kr2 and kr3. In the symmetric case with kr2 = kr3, the probability of one of the outcomes
will obviously be 0.5 irrespective of the length of the perturbation period. If kr2 �= kr3, the
probability of one of the outcomes will depend on the length of the perturbation period, and
this dependence is expected to be weak. Concerning biology, it is worth however articulating
two points. First, it is desirable to have a perturbation with a large amplitude. In figure 1,
for example, NP 1 drops from about 500 to 20. Such changes can hardly be realized without
bistability of gene 1. Second, the duration of the decision stage should be relatively short,
because as already mentioned in section 2 there are indications that the differentiation of cells
is controlled by regulating a short stage of the progression through the G1 phase and entry into
the S phase. The fastest switch can be performed by using a stepwise perturbation (like in our
model). In this case, the duration of the decision stage is about 15% of the duration of the cell
cycle (see, e.g., figure 1). This value is biologically reasonable. The extension of the length
of the perturbation period will result in a longer decision stage, and it will not be biologically
reasonable.

Finally, we may note that the problem treated in this paper is interdisciplinary and can be
viewed from very different perspectives. The model, results and discussions presented help to
understand the situations in the related areas.
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